如果这篇博客帮助到你,可以请我喝一杯咖啡~
CC BY 4.0 (除特别声明或转载文章外)
Here is a VE template for you to solve the burglary example:
class VariableElimination:
@staticmethod
def inference(factorList, queryVariables,
orderedListOfHiddenVariables, evidenceList):
for ev in evidenceList:
# Your code here
for var in orderedListOfHiddenVariables:
# Your code here
print "RESULT:"
res = factorList[0]
for factor in factorList[1:]:
res = res.multiply(factor)
total = sum(res.cpt.values())
res.cpt = {k: v/total for k, v in res.cpt.items()}
res.printInf()
@staticmethod
def printFactors(factorList):
for factor in factorList:
factor.printInf()
class Util:
@staticmethod
def to_binary(num, len):
return format(num, '0' + str(len) + 'b')
class Node:
def __init__(self, name, var_list):
self.name = name
self.varList = var_list
self.cpt = {}
def setCpt(self, cpt):
self.cpt = cpt
def printInf(self):
print "Name = " + self.name
print " vars " + str(self.varList)
for key in self.cpt:
print " key: " + key + " val : " + str(self.cpt[key])
print ""
def multiply(self, factor):
"""function that multiplies with another factor"""
# Your code here
new_node = Node("f" + str(newList), newList)
new_node.setCpt(new_cpt)
return new_node
def sumout(self, variable):
"""function that sums out a variable given a factor"""
# Your code here
new_node = Node("f" + str(new_var_list), new_var_list)
new_node.setCpt(new_cpt)
return new_node
def restrict(self, variable, value):
"""function that restricts a variable to some value
in a given factor"""
# Your code here
new_node = Node("f" + str(new_var_list), new_var_list)
new_node.setCpt(new_cpt)
return new_node
# create nodes for Bayes Net
B = Node("B", ["B"])
E = Node("E", ["E"])
A = Node("A", ["A", "B", "E"])
J = Node("J", ["J", "A"])
M = Node("M", ["M", "A"])
# Generate cpt for each node
B.setCpt({'0': 0.999, '1': 0.001})
E.setCpt({'0': 0.998, '1': 0.002})
A.setCpt({'111': 0.95, '011': 0.05, '110': 0.94, '010': 0.06,
'101': 0.29, '001': 0.71, '100': 0.001, '000': 0.999})
J.setCpt({'11': 0.9, '01': 0.1, '10': 0.05, '00': 0.95})
M.setCpt({'11': 0.7, '01': 0.3, '10': 0.01, '00': 0.99})
print("P(A) **********************")
VariableElimination.inference([B, E, A, J, M], ['A'], ['B', 'E', 'J', 'M'], {})
print("P(B | J~M) **********************")
VariableElimination.inference([B, E, A, J, M], ['B'], [
'E', 'A'], {'J': 1, 'M': 0})
Task
You should implement 4 functions: inference
, multiply
, sumout
and restrict
.
Codes
class VariableElimination:
@staticmethod
def inference(factorList, queryVariables,
orderedListOfHiddenVariables, evidenceList):
for ev in evidenceList:
# Your code here
for factor in factorList:
if ev in factor.varList:
if len(factor.varList) > 1:
factorList.append(
factor.restrict(ev, evidenceList[ev]))
factorList.remove(factor)
for var in orderedListOfHiddenVariables:
# Your code here
new_var_list = []
for e in factorList:
if var in e.varList:
new_var_list.append(e)
first = True
for e in new_var_list:
for i in factorList:
if i.name == e.name:
factorList.remove(i)
if first:
new_var = e
first = False
else:
new_var = new_var.multiply(e)
factorList.append(new_var.sumout(var))
print("RESULT:")
res = factorList[0]
for factor in factorList[1:]:
res = res.multiply(factor)
total = sum(res.cpt.values())
res.cpt = {k: v/total for k, v in res.cpt.items()}
res.printInf()
@staticmethod
def printFactors(factorList):
for factor in factorList:
factor.printInf()
class Util:
@staticmethod
def to_binary(num, len):
return format(num, '0' + str(len) + 'b')
class Node:
def __init__(self, name, var_list):
self.name = name
self.varList = var_list
self.cpt = {}
def setCpt(self, cpt):
self.cpt = cpt
def printInf(self):
print("Name = " + self.name)
print(" vars " + str(self.varList))
for key in self.cpt:
print(" key: " + key + " val : " + str(self.cpt[key]))
print()
def multiply(self, factor):
"""function that multiplies with another factor"""
# Your code here
new_cpt = {}
new_var_list = list(self.varList)
idx1 = []
idx2 = []
for var in factor.varList:
if var in new_var_list:
idx1.append(self.varList.index(var))
idx2.append(factor.varList.index(var))
else:
new_var_list.append(var)
for k1, v1 in self.cpt.items():
for k2, v2 in factor.cpt.items():
flag = True
for i in range(len(idx1)):
if k1[idx1[i]] != k2[idx2[i]]:
flag = False
break
if flag:
new_key = k1
for i in range(len(k2)):
if i not in idx2:
new_key += k2[i]
new_cpt[new_key] = v1 * v2
new_node = Node("f" + str(new_var_list), new_var_list)
new_node.setCpt(new_cpt)
return new_node
def sumout(self, variable):
"""function that sums out a variable given a factor"""
# Your code here
new_cpt = {}
new_var_list = list(self.varList)
new_var_list.remove(variable)
idx = self.varList.index(variable)
for k, v in self.cpt.items():
tmp = k[:idx] + k[idx+1:]
if tmp not in new_cpt.keys():
new_cpt[tmp] = v
else:
new_cpt[tmp] += v
new_node = Node("f" + str(new_var_list), new_var_list)
new_node.setCpt(new_cpt)
return new_node
def restrict(self, variable, value):
"""function that restricts a variable to some value
in a given factor"""
# Your code here
new_cpt = {}
new_var_list = list(self.varList)
new_var_list.remove(variable)
idx = self.varList.index(variable)
value = str(value)
for k, v in self.cpt.items():
if k[idx] == value:
new_cpt[k[:idx] + k[idx+1:]] = v
new_node = Node("f" + str(new_var_list), new_var_list)
new_node.setCpt(new_cpt)
return new_node
# create nodes for Bayes Net
B = Node("B", ["B"])
E = Node("E", ["E"])
A = Node("A", ["A", "B", "E"])
J = Node("J", ["J", "A"])
M = Node("M", ["M", "A"])
# Generate cpt for each node
B.setCpt({'0': 0.999, '1': 0.001})
E.setCpt({'0': 0.998, '1': 0.002})
A.setCpt({'111': 0.95, '011': 0.05, '110': 0.94, '010': 0.06,
'101': 0.29, '001': 0.71, '100': 0.001, '000': 0.999})
J.setCpt({'11': 0.9, '01': 0.1, '10': 0.05, '00': 0.95})
M.setCpt({'11': 0.7, '01': 0.3, '10': 0.01, '00': 0.99})
print("P(A) **********************")
VariableElimination.inference([B, E, A, J, M], ['A'], ['B', 'E', 'J', 'M'], {})
print("P(B | J~M) **********************")
VariableElimination.inference([B, E, A, J, M], ['B'], [
'E', 'A'], {'J': 1, 'M': 0})
Results
P(A) **********************
RESULT:
Name = f['A']
vars ['A']
key: 1 val : 0.0025164420000000002
key: 0 val : 0.997483558
P(B | J~M) **********************
RESULT:
Name = f['B']
vars ['B']
key: 0 val : 0.9948701418665987
key: 1 val : 0.0051298581334013015