如果这篇博客帮助到你,可以请我喝一杯咖啡~
CC BY 4.0 (除特别声明或转载文章外)
Enju With math problem
见过几次的套路题了。题目给的范围内,素数出现的最大间隔有两百多个,所以暴力判断其中某一个一定是素数是不够的。这里我判断是否存在一个数是某两个素数乘积p*q
的形式,并用前一百个素数带入p
暴力检验,终于在最后一分钟 A 掉了这个题!
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
struct Mod
{
const ll M, SM;
Mod(ll M) : M(M), SM(sqrt(M) + 0.5) {}
ll qadd(ll &a, ll b) const { return a += b, a >= M ? a -= M : a; } //??a?b????????,??????,????????
ll add(ll a, ll b) const { return qadd(a = (a + b) % M, M); } //??a?b??????????????
ll mul(ll a, ll b) const { return add(a * b, M); }
ll inv(ll a) const { return pow(a, M - 2); } //??M???,??return pow(a, phi(M) - 1);
ll pow(ll a, ll b) const
{
ll r = 1;
for (a = add(a, M); b; b >>= 1, a = mul(a, a))
if (b & 1)
r = mul(r, a);
return r;
}
};
struct EulerSieve
{
vector<int> p, m; //????,?????,????,??????
EulerSieve(int N) : m(N, 0)
{
for (long long i = 2, k; i < N; ++i) //?i*p[j]?int
{
if (!m[i])
p.push_back(m[i] = i); //i???
for (int j = 0; j < p.size() && (k = i * p[j]) < N; ++j)
if ((m[k] = p[j]) == m[i])
break;
}
}
} e(1e7 + 9);
struct PollardRho
{
bool isPrime(ll n, int S = 12) //MillerRabin????,S?????,??S??????,S=12???unsigned long long?????;n<2???
{
static ll d, u, t, p[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
for (d = n - 1; !(d & 1);)
d >>= 1; //??0,1???!
Mod mo(n);
for (int i = 0; i < S; ++i)
{
if (!(n % p[i]))
return n == p[i];
for (t = mo.pow(p[i], u = d); t != n - 1 && t != 1 && u != n - 1;)
t = mo.mul(t, t), u <<= 1;
if (t != n - 1 && !(u & 1))
return 0;
}
return 1;
}
void fac(ll n, vector<ll> &factor)
{
if (n < 2)
return;
if (n < e.m.size())
return factor.push_back(e.m[n]), fac(n /= e.m[n], factor);
if (isPrime(n))
return factor.push_back(n);
Mod mo(n);
for (ll c = 1;; ++c)
for (ll i = 0, k = 1, x = rand() % (n - 1) + 1, y, p;;)
{
if (++i == k)
y = x, k <<= 1;
if (x = mo.add(mo.mul(x, x), c), p = __gcd(abs(x - y), n), p == n)
break;
if (p > 1)
return fac(p, factor), fac(n / p, factor);
}
}
};
int t, a[500], b[200] = {0, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44, 24, 70, 24, 72, 36, 40, 36, 60, 24, 78, 32, 54, 40, 82, 24, 64, 42, 56, 40, 88, 24, 72, 44, 60, 46, 72, 32, 96, 42, 60, 40};
PollardRho pr;
vector<ll> vec;
inline int fai(int n)
{
vec.clear();
pr.fac(n, vec);
sort(vec.begin(), vec.end());
int sz = unique(vec.begin(), vec.end()) - vec.begin();
int ret = n;
for (int i = 0; i < sz; i++)
{
n = n / vec[i] * (vec[i] - 1);
}
return n;
}
inline bool check()
{
for (int i = 1; i <= 100; i++)
if (a[i] != b[i])
return false;
return true;
}
bool ok(int pos)
{
for (int j = 1; j <= 100; j++)
if (fai(pos + j - 1) != a[j])
return 0;
return 1;
}
int main(void)
{
scanf("%d", &t);
//freopen("qwr","w",stdout);
while (t--)
{
for (int i = 1; i <= 100; i++)
scanf("%d", &a[i]);
if (check())
{
printf("YES\n1\n");
continue;
}
bool ct2 = 0;
int pos;
for (int i = 1; i <= 100; i++)
{
if (ok(pos = a[i] - i + 2))
{
ct2 = 1;
break;
}
for (int j = 0; e.p[j] < 100; ++j)
if (a[i] % (e.p[j] - 1) == 0)
{
int q = a[i] / (e.p[j] - 1) + 1;
int p = e.p[j];
pos = p * q - i + 1;
if (ok(pos))
{
ct2 = 1;
break;
}
}
if (ct2)
break;
}
if (ct2)
{
printf("YES\n%d\n", pos);
}
else
puts("NO");
}
}
Fire-Fighting Hero
Dijkstra 跑一下即可,多起点连到一个虚拟节点,边长为 0。
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
const ll INF = 1e9 + 7;
struct Graph
{
struct Vertex
{
vector<int> o;
};
struct Edge
{
int first, second;
ll len; //边长、容量,图论算法使用
};
vector<Vertex> v; //点集
vector<Edge> e; //边集
Graph(int n) : v(n) {}
void add(const Edge &ed)
{
v[ed.first].o.push_back(e.size());
e.push_back(ed);
}
};
struct Dijkstra : Graph
{
vector<ll> d;
Dijkstra(int n) : Graph(n) {}
ll ask(int s)
{
d.assign(v.size(), INF);
priority_queue<pair<ll, int>> q;
ll r = 0;
for (q.push(make_pair(d[s] = 0, s)); !q.empty();)
{
ll dis = -q.top().first;
int u = q.top().second;
if (q.pop(), d[u] < dis)
continue;
r = dis;
for (int i = 0, k, to; i != v[u].o.size(); ++i)
if (k = v[u].o[i], to = e[k].second,
d[to] > d[u] + e[k].len)
{
d[to] = d[u] + e[k].len;
q.push(make_pair(-d[to], to));
}
}
return r;
}
};
int main()
{
int t, v, e, s, k, c;
for (scanf("%d", &t); t--;)
{
scanf("%d%d%d%d%d", &v, &e, &s, &k, &c);
Dijkstra g(v + 1);
for (int i = 0, t; i < k; ++i)
scanf("%d", &t), g.add({0, t, 0});
for (int i = 0, x, y, z; i < e; ++i)
{
scanf("%d%d%d", &x, &y, &z);
g.add({x, y, z});
g.add({y, x, z});
}
ll ans1 = g.ask(s), ans2 = g.ask(0);
printf("%d\n", ans1 <= ans2 * c ? ans1 : ans2);
}
}
Magic Master
暴力模拟即可,不知道为什么通过率这么低。也许是因为题面太长了?
#include <bits/stdc++.h>
using namespace std;
int t, n, m, q;
int main()
{
for (scanf("%d", &t); t--;)
{
scanf("%d%d%d", &n, &m, &q);
for (int i = 0, k; i < q; ++i)
{
scanf("%d", &k);
int hand = 0, desk = n;
while (k > 1)
{
++hand, --desk, --k;
k -= m;
while (k < 1)
k += desk;
}
printf("%d\n", hand + 1);
}
}
}
Pangu Separates Heaven and Earth
诚意很低的签到题,超长题面加超水签到题目?
#include <bits/stdc++.h>
using namespace std;
int main()
{
int t, n;
for (scanf("%d", &t); t--;)
{
scanf("%d", &n);
puts(n == 1 ? "18000" : "0");
}
}
The Nth Item
标解要用到二次剩余,这里我按照$2^{20}$进制对矩阵乘法的结果预处理,使得每一个询问可以在三个矩阵乘法的时间内算出来,同时使用了小常数的做法,最终通过了这道题。
#include <bits/stdc++.h>
#define ll long long
#define mod 998244353
#define maxn (1 << 20)
using namespace std;
struct Mod
{
const ll M, SM;
Mod(ll M) : M(M), SM(sqrt(M) + 0.5) {}
ll qadd(ll &a, ll b) const
{
return a += b, a >= M ? a -= M : a; //??a?b????????,??????,????????
}
ll add(ll a, ll b) const
{
return qadd(a = (a + b) % M, M); //??a?b??????????????
}
ll mul(ll a, ll b) const
{
return add(a * b, M);
}
ll inv(ll a) const
{
return pow(a, M - 2); //??M???,??return pow(a, phi(M) - 1);
}
ll pow(ll a, ll b) const
{
ll r = 1;
for (a = add(a, M); b; b >>= 1, a = mul(a, a))
if (b & 1)
r = mul(r, a);
return r;
}
};
Mod m(mod);
struct mat
{
ll a, b, c, d;
mat operator*(const mat &q) const
{
return {(a * q.a + b * q.c) % mod,
(a * q.b + b * q.d) % mod,
(c * q.a + d * q.c) % mod,
(c * q.b + d * q.d) % mod};
}
};
mat a[3][maxn + 9] = {(mat){1, 0, 0, 1}, (mat){3, 2, 1, 0}};
ll q, n, ans, ansb;
int main(void)
{
scanf("%lld%lld", &q, &n);
for (int i = 2; i <= maxn; i++)
a[0][i] = a[0][i - 1] * a[0][1];
a[1][0] = (mat){1, 0, 0, 1};
a[1][1] = a[0][maxn];
for (int i = 2; i <= maxn; i++)
a[1][i] = a[1][i - 1] * a[1][1];
a[2][1] = a[1][maxn];
a[2][0] = (mat){1, 0, 0, 1};
for (int i = 2; i <= maxn; i++)
a[2][i] = a[2][i - 1] * a[2][1];
for (int i = 1; i <= q; i++)
{
n = n ^ (ans * ans);
// n=i;
mat tem = (mat){1, 0, 0, 1};
ll temn = n - 1;
if (temn)
{
tem = tem * a[0][temn - ((temn >> 20) << 20)], temn >>= 20;
if (temn)
{
tem = tem * a[1][temn - ((temn >> 20) << 20)], temn >>= 20;
if (temn)
tem = tem * a[2][temn - ((temn >> 20) << 20)], temn >>= 20;
}
}
ansb ^= ans = tem.a;
}
printf("%lld", ansb);
}