Educational Codeforces Round 65 (Rated for Div. 2) 晓风の个人博客

官方题解

最后一分钟提交不上去,不然E就过了呜呜呜。

Telephone Number

#include <bits/stdc++.h>
using namespace std;
const int N = 127;
char s[N];
int t, n;
int main()
{
	for (scanf("%d", &t); t--;)
	{
		scanf("%d%s", &n, s);
		printf(find(s, s + n, '8') > s + n - 11 ? "NO\n" : "YES\n");
	}
}

Lost Numbers

暴力check一下即可。

#include <bits/stdc++.h>
using namespace std;
int a[6] = {4, 8, 15, 16, 23, 42}, b[6];
int main()
{
	for (int i = 0; i < 4; ++i)
	{
		printf("? %d %d\n", i + 1, i + 2), fflush(stdout);
		scanf("%d", &b[i]);
	}
	do
		if (a[0] * a[1] == b[0] && a[1] * a[2] == b[1] && a[2] * a[3] == b[2] && a[3] * a[4] == b[3])
			return printf("! %d %d %d %d %d %d", a[0], a[1], a[2], a[3], a[4], a[5]), 0;
	while (next_permutation(a, a + 6));
}

News Distribution

每个group里的人都是连通的,最后求一下每个人所在连通块的大小即可。使用并查集实现。

#include <bits/stdc++.h>
using namespace std;
struct UnionfindSet : vector<int>
{
	vector<int> siz;
	UnionfindSet(int n) : vector<int>(n), siz(n, 1)
	{
		for (int i = 0; i < n; ++i)
			at(i) = i;
	}
	void merge(int u, int w)
	{
		if (w = ask(w), u = ask(u), w != u)
			siz[at(w) = u] += siz[w];
	}
	int ask(int u) { return at(u) != u ? at(u) = ask(at(u)) : u; }
};
int main()
{
	int n, m;
	scanf("%d%d", &n, &m);
	UnionfindSet ufs(n + 1);
	for (int i = 0, w, u, k; i < m; ++i)
		if (scanf("%d", &k), k)
			for (scanf("%d", &u); --k; ufs.merge(u, w))
				scanf("%d", &w);
	for (int i = 1; i <= n; ++i)
		printf("%d ", ufs.siz[ufs.ask(i)]);
}

Bicolored RBS

贪心。

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 9;
char s[N];
int n;
int main()
{
	scanf("%d%s", &n, s);
	for (int i = 0, d[2] = {0, 0}; i < n; ++i)
	{
		if (s[i] == '(')
			putchar('0' + (d[0] > d[1])), ++d[d[0] > d[1]];
		else
			putchar('0' + (d[0] < d[1])), --d[d[0] < d[1]];
	}
}

比赛时候的二分解法

比赛的时候sb了,敲了一个二分。

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 9;
char s[N], ans[N];
int n;
int work(int m)
{
	for (int i = 0, d[2] = {0, 0}; i < n; ++i)
	{
		if (s[i] == '(')
		{
			ans[i] = '0' + (d[0] > d[1]);
			if (++d[d[0] > d[1]] > m)
				return 0;
		}
		else
			ans[i] = '0' + (d[0] < d[1]), --d[d[0] < d[1]];
	}
	return 1;
}
int bs(int b, int e)
{
	if (e - b < 2)
		return e;
	int m = b + e >> 1;
	return work(m) ? bs(b, m) : bs(m, e);
}
int main()
{
	scanf("%d%s", &n, s);
	work(bs(0, n));
	printf("%s", ans);
}

Range Deleting

手速慢了一丢丢,最后一分钟没交上去,赛后马上ac…😔

枚举$1,2,\ldots,x$里的所有上界$r$,找到对应最大的下界$l$使得$[l,r]$是符合要求,把$l$加入答案即可。比赛的时候这个下界是二分去找的,然而结束之后我仔细想了一下,这个下界$l$是随着$r$单调的,因此可以直接用双指针去维护,于是得到了下面这个线性的做法。

理想是美好的,然而双指针的线性做法居然比二分的做法运行时间要长也是醉了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e6 + 9;
ll n, x, y, ans, mi[N], ma[N], mma[N];
int main()
{
	scanf("%lld%lld", &n, &x);
	for (ll i = 1, a; i <= n; ++i)
	{
		scanf("%lld", &a);
		if (!mi[a])
			mi[a] = i;
		ma[a] = i;
	}
	y = x;
	for (ll i = 1; i <= x; ++i)
	{
		mma[i] = max(mma[i - 1], ma[i]);
		if (y == x && mi[i] && mi[i] < mma[i - 1])
			y = i;
	}
	for (; x; --x)
	{
		while (y > x || mma[y - 1] > n)
			--y;
		ans += y;
		if (ma[x] > n)
			break;
		if (mi[x])
			n = min(n, mi[x]);
	}
	printf("%lld", ans);
}

比赛时候的二分解法

为啥我比赛的时候老想着二分…

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e6 + 9;
ll n, x, se, ans, mi[N], ma[N], bmi[N], bma[N];
ll bs(ll b, ll e, ll pos)
{
	if (e - b < 2)
		return b;
	ll m = b + e >> 1;
	return bmi[m] > pos ? bs(b, m, pos) : bs(m, e, pos);
}
int main()
{
	scanf("%lld%lld", &n, &x);
	for (int i = 1, a; i <= n; ++i)
	{
		scanf("%d", &a);
		if (!mi[a])
			mi[a] = ma[a] = i;
		else
			ma[a] = i;
	}
	bmi[x + 1] = n + 1;
	for (ll i = x; i; --i)
	{
		bmi[i] = bmi[i + 1];
		if (mi[i])
			bmi[i] = min(bmi[i], mi[i]), bma[i] = max(bma[i + 1], ma[i]);
		if (!se && ma[i] && ma[i] > bmi[i + 1])
			se = i;
	}
	for (ll i = 1, mma = 0; i <= x; ++i)
	{
		ans += x - bs(max(i, se), x + 1, mma) + 1;
		if (mi[i] && mi[i] < mma)
			break;
		mma = max(mma, ma[i]);
	}
	printf("%lld", ans);
}

Scalar Queries

从小到大枚举a,计算其对答案的贡献。

用两个树状数组分别维护已经考虑过的数里下标前w小和前k大的。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e5 + 7;
struct Mod
{
	const ll M;
	Mod(ll M) : M(M) {}
	ll qadd(ll a, ll b) const { return a += b, a < M ? a : a - M; }
	ll add(ll a, ll b) const { return qadd((a + b) % M, M); }
} M(1e9 + 7);
struct BaseFenwick : vector<ll>
{
	BaseFenwick(int n) : vector<ll>(n, 0) {}
	void add(int x, ll w)
	{
		for (; x < size(); x += x & -x)
			at(x) = M.qadd(at(x), w);
	}
	ll ask(int x)
	{
		ll ans = 0;
		for (; x; x -= x & -x)
			ans = M.qadd(ans, at(x));
		return ans;
	}
} t[2] = {N, N};
pair<int, int> a[N];
int n, ans;
int main()
{
	scanf("%d", &n);
	for (int i = 0; i < n; ++i)
		scanf("%d", &a[i].first), a[i].second = i;
	sort(a, a + n);
	for (int i = 0, w, k; i < n; ++i)
	{
		t[1].add(k = n - a[i].second, w = a[i].second + 1);
		t[0].add(k, k);
		ans = M.add(ans, a[i].first * M.add(w * t[0].ask(k), k * M.add(t[1].ask(n), -t[1].ask(k))));
	}
	printf("%d", ans);
}

Low Budget Inception

怪长的题面,大意是计算「盗梦空间」中扭曲空间的角度。按题意找到,双指针强力模拟即可。

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 9;
double PI = acos(-1), ans;
int n, d, m, x, cur, dl, dr, a[N];
int main()
{
	scanf("%d%d", &n, &d);
	for (int i = 1; i <= n; ++i)
		scanf("%d", &a[i]);
	for (scanf("%d", &m); m--; printf("%.9lf\n", ans))
	{
		for (scanf("%d", &x); cur < n && a[cur + 1] < x;)
			++cur;
		if (a[cur] == x - 1 && a[cur + 1] == x)
			ans = PI;
		else if (a[cur] == x - 1 || a[cur + 1] == x)
			ans = PI / 2;
		else
		{
			ans = 0;
			if (cur)
				ans = max(ans, atan2(1, dl = x - a[cur] - 1));
			if (cur < n)
				ans = max(ans, atan2(1, dr = a[cur + 1] - x));
			for (int pl = cur, pr = cur + 1, d = min(dl, dr) * 4 + 20; pl && pr <= n && a[pr] - a[pl] <= d; dl < dr ? --pl : ++pr)
			{
				dl = x - a[pl] - 1, dr = a[pr] - x;
				if (abs(dl - dr) < 2)
				{
					ans = max(ans, 2 * atan2(1, max(dl, dr)));
					break;
				}
			}
		}
	}
}